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1. Introduction

Bagger-Lambert-Gustavsson model [1 – 4] gives a prototype construction of an N = 8 su-

perconformal field theory in 3 dimensions. The construction relies on two structures of a

Lie 3-bracket: the fundamental identity which is essential to the closure of the supersym-

metry transformations; and an invariant metric which allows one to convert the equation

of motion to an off-shell action. The original example of BL was based on a Lie 3-algebra

A4 with a positive definite metric. In this case, one may alternatively define the theory by

a Lie algebra SU(2)×SU(2) [5]. It was then proved that this is essentially the only possible

3-algebra which satisfies all the requirements [6 – 8] (see also [9]).

It turned out that one may replace the conditions for Lie 3-algebra by milder ones. One

possibility is to permit to include a negative norm generator [10 – 12] (see also [13 – 17]).

In this case, BLG model can have gauge symmetry based on an arbitrary Lie algebra g.

Another option is to lower the supersymmetry to N = 6 where we can have U(N)×U(N)

or SU(N) × SU(N) gauge symmetry [18] (see also [19 – 26]) which may be alternatively

realized by Lie 3-algebra which is not anti-symmetric [27].

One of the crucial test of multiple M2 brane theory is whether one can reproduce the

celebrated N3/2 scaling law for entropy [28] as is predicted by AdS/CFT correspondence.

For any theory based on Lie algebra, however, this seems to be difficult. The number of

moduli is related to the rank of the Lie algebra and the number of the generators is given

by the dimension. It will produce N3/2 scaling only if one consider delicately chosen tensor

products of Lie groups [13] or so far hidden mechanism changes the degrees of freedom.

– 1 –
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In this paper, we take a different approach to this issue. Some time ago, it was proved

that BLG model based on infinite dimensional Lie 3-algebra defined by Nambu-Poisson

bracket is equivalent to M5 brane world volume theory [29, 30] (see also [31 – 34]). What

we are going to do is to cut-off this Lie 3-algebra to finite dimensions. It is actually very

natural to expect to have N3/2 law from the following geometrical reason.

We note that the Nambu-Poisson bracket is defined by [35],

{f, g, h} =

3
∑

µ,ν,ρ=1

ǫµνρ∂µf∂νg∂ρh. (1.1)

Here f, g, h are arbitrary functions of three variables x1, x2, x3. Suppose we can truncate

this infinite dimensional Hilbert space into a finite dimensional one, let us assume that we

have N degrees of freedom for each dimensions. The number of independent generators

behaves as #G ∼ N3. On the other hand, the number of M2 branes is, roughly speaking,

identified with the number of the moduli which are related to mutually commuting degree

of freedom. In this case, due to the structure of the Nambu-Poisson bracket, mutually

commuting generators may be taken as functions which depend only on two variables, say

x1, x2. The number of such generators can be estimated as #M ∼ N2. By combining it,

we have the desired scaling #G ∼ (#M)3/2!

In this paper, by generalizing the procedure considered in [9], we show how to obtain

a finite dimensional Lie 3-algebra from a truncation of the Hilbert space where Nambu-

Poisson bracket is defined. The fundamental identity of the Lie 3-algebra is preserved by the

cut-off but it becomes generally difficult to keep a non-trivial invariant metric. Therefore,

although it is difficult to write BLG action, we can define the N = 8 supersymmetric

equation of motion as considered in [2, 36]. The counting of the moduli is given as above

and we obtain the N3/2 scaling law of entropy rather robustly.

By definition, our truncated algebra becomes the infinite dimensional Lie 3-algebra

from Nambu-Poisson bracket in the large N limit. In this sense, it gives an intermediate

geometrical structure between M2-brane and M5-brane. This is somewhat analogous to

the fact that D (p + 2)-brane is obtained by collecting large N limit of D p-brane. In

this sense, it may serve as a candidate of multiple M2 branes although it requires many

improvements to define a realistic theory.1

For other important results on multiple M2-brane, see for example [43].

2. Truncation of Nambu-Poisson bracket

We start from a Nambu-Poisson bracket defined by local coordinates xµ (µ = 1, · · · , d) by

{f1, f2, f3} := P (f1, f2, f3) :=
d
∑

µ1,µ2,µ3=1

Pµ1µ2µ3(x)∂µ1
f1∂µ2

f2∂µ3
f3 (2.1)

1We note that a derivation of N3/2 law for M2 branes was considered previously in [37] (see also [38, 39])

in the context of Basu-Harvey equation [40] which describes a “ridge” configuration of M2-M5 system. Their

analysis is based on the fuzzy S3 defined in [41, 42]. Since it appeared before [2], the essential ingredients

of the BLG model such as Lie 3-algebra and the fundamental identity were not taken into account.

– 2 –
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where Pµ1µ2µ3(x) is an anti-symmetric tensor. In order to apply to the BLG model, it is

essential to assume here that the Nambu-Poisson bracket satisfies fundamental identity,

{f1, f2, {f3, f4, f5}} = {{f1, f2, f3}, f4, f5}

+{f3, {f1, f2, f4}, f5} + {f3, f4, {f1, f2, f5}} . (2.2)

The Leibniz rule,

{f0f1, f2, f3} = f0{f1, f2, f3} + {f0, f2, f3}f1 , (2.3)

is usually required in the literature. In the context of BLG model, the role of this condition

is not very clear at this moment. The fundamental identity imposes a severe constraint on

Pµ1µ2µ3(x). In mathematical literature, it is known that the fundamental identity implies

the decomposability of P (see for example [44] and references therein). Namely it should

be rewritten as

P = Pµ1µ2µ3(x)∂µ1
∧ ∂µ2

∧ ∂µ3
= V1 ∧ V2 ∧ V3 , (2.4)

Vi(x) = V µ
i (x)∂µ . (2.5)

It implies that the Nambu-Poisson bracket is essentially defined on three dimensional sub-

space (N ) specified by the tangent vectors Vi (i = 1, 2, 3). In [29, 30], it was used to obtain

the M5 brane from BLG model whose world volume is the product M×N . In the following,

since we need to restrict Pµ1µ2µ3(x) to be polynomials of fixed degree for the consistency

of the cut-off, we will not use this decomposability. When Pµ1µ2µ3(x) are homogeneous

polynomial of degree p, we call the 3-bracket as the homogeneous Nambu-Poisson bracket.2

In [9], a truncation of the Nambu-Poisson bracket (2.1) which satisfies the fundamental

identity was proposed. The idea was to truncate the Hilbert space C(X) (functions on X) to

polynomials of xµ of degree ≤ N . We will write this truncated Hilbert space as C(X)N . For

such truncation to work properly, we need to restrict the anti-symmetric tensor Pµ1µ2µ3(x)

to be a homogeneous polynomial of degree p > 0.

2Let us briefly mention the previous studies on the quantum Nambu bracket. One of the most natural

direction is to seek an analog of the Moyal product as a deformation of Poisson bracket. It was studied

most extensively by Takhtajan [45] and his collaborators. Despite much efforts, however, the natural analog

of the Moyal product has not been found so far. At some point, they changed the strategy and found a

deformation of Nambu-Poisson bracket which was called “Zariski quantization” [46]. This construction,

however, needs to use an analog of the second quantized operators and is infinite dimensional by its nature.

Another approach is to use a generalization of the matrix commutator (see for example [47]). Although it

gives rise to a very simple finite dimensional system, the triple commutator satisfies so called generalized

Jacobi identity instead of the fundamental identity. In this sense, it is not obvious how to apply their

algebraic structure to the BLG model. The third approach is to use the cubic matrix (three index object

like “Aijk”) to represent the 3-algebra (see for example [48, 49]). Although there were some success, for

example in the construction of “representations” of A4 algebra [50], the cubic matrix in general does not

satisfy the fundamental identity. So it is still mysterious how to apply it to BLG model. To summarize,

although there are some attractive proposals in the quantum Nambu bracket, our simple cut-off procedure

of the Nambu-Poisson seems to be the first example which can be readily applicable to BLG model. We

do not, of course, mean that other approaches which we mentioned are meaningless in the BLG model. On

the contrary we are trying to find applications of these constructions which we hope to report in the near

future.
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On C(X)N , we redefine the Nambu-Poisson bracket to project out all the monomials

of order > N . We denote such projector as πN which acts on the polynomials of xµ as

πN





∞
∑

n1,···,nd=0

c(n1, · · · , nd)(x
1)n1 · · · (xd)nd





=

|~n|≤N
∑

n1,···,nd=0

c(n1, · · · , nd)(x
1)n1 · · · (xd)nd , (2.6)

where |~n| :=
∑d

i=1 ni. The Nambu-Poisson bracket on the truncated Hilbert space C(X)N
is then defined as

{f1, f2, f3}N := πN (P (f1, f2, f3)) . (2.7)

It satisfies the fundamental identity

{f1, f2, {f3, f4, f5}N}N = {{f1, f2, f3}N , f4, f5}N

+{f3, {f1, f2, f4}N , f5}N + {f3, f4, {f1, f2, f5}N}N , (2.8)

because of the following reason [9]. For simplicity, we assume fi to be a monomial of degree

pi. Since (2.8) is satisfied trivially if fi =const, one may assume pi > 0. The fundamental

identity becomes nontrivial if the outer bracket is non-vanishing, namely,

p1 + p2 + p3 + p4 + p5 − 6 + 2p ≤ N . (2.9)

The fundamental identity is broken if the inner bracket vanishes due to the projection.

This does not happen. For example, for the left hand side of (2.8), the above inequality

together with pi ≥ 1 implies

p3 + p4 + p5 ≤ N + 6 − 2p − p1 − p2 ≤ N + 4 − 2p ≤ N + 3 − p . (2.10)

In the last inequality, we used p ≥ 1. Therefore whenever the outer bracket does not

vanish, the value for the outer bracket is identical with the original bracket. So the FI on

the truncated Hilbert space comes from the FI on the original space.

C(X)N is generated by finite number of monomials, (x1)n1 · · · (xd)nd := T (~n) =

T (n1, · · · , nd) where ni ≥ 0 and |~n| ≤ N . The truncated Nambu-Poisson bracket defines a

Lie 3-algebra,

{T (~n1), T (~n2), T (~n3)}N =
∑

~n4

f~n1~n2~n3

~n4
T (~n4) , (2.11)

which satisfies the fundamental identity,

f~n3~n4~n5

~n6
f~n1~n2~n6

~n7
= f~n1~n2~n3

~n6
f~n6~n4~n5

~n7

+f~n1~n2~n4

~n6
f~n3~n6~n5

~n7
+ f~n1~n2~n5

~n6
f~n3~n4~n6

~n7
. (2.12)

– 4 –
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We remark that the geometrical meaning of the algebra becomes clear when one takes the

large N limit where the algebra of polynomials can be completed in different ways and this

corresponds to different topological spaces.

We note that because of the constraint p ≥ 1, we cannot define the truncated 3-algebra

from the Jacobian,

P = ∂1 ∧ ∂2 ∧ ∂3 . (2.13)

As for the Leibniz rule (2.3), we have to be careful how to define the product of

functions in the truncated Hilbert space. We define

f •N g = πN (fg) , (2.14)

which gives a commutative and associative product on the truncated space.3 We replace

the Leibniz rule by using this product rule,

{f0 •N f1, f2, f3}N = f0 •N {f1, f2, f3}N + {f0, f2, f3}N •N f1 . (2.15)

We show that this condition is also satisfied for p ≥ 1.

Let us assume that fi are monomials of x with degree pi ≥ 1 since the Leibniz rule is

trivially satisfied when p0 = 0 or p1 = 0. The condition that the left hand side of (2.15) is

non-vanishing is

p0 + p1 ≤ N , p0 + p1 + p2 + p3 + p − 3 ≤ N . (2.16)

Since the second condition gives a stronger condition than the first for p ≥ 1, we take the

second condition. The first term on the right hand side is non-vanishing if

p1 + p2 + p3 + p − 3 ≤ N , p0 + p1 + p2 + p3 + p − 3 ≤ N . (2.17)

Again the second condition gives a stronger constraint. The second term on the left hand

side is non-vanishing with the same condition. To summarize, the conditions for the both

sides of equation are the same. So the truncation is compatible with the Leibniz rule (2.15)

for p ≥ 1.

3. Homogeneous Nambu-Poisson brackets and associated (fuzzy) geome-

tries

For any homogeneous Nambu-Poisson, we can define a truncated algebra for each N . In the

following, we give some examples of homogeneous algebra which satisfies the fundamental

identity and associate each algebra with a three dimensional manifold. In general, we have

descriptions of the homogeneous Nambu-Poisson in terms of d variables. The fact that

Nambu-Poisson bracket is defined in 3-dimensions can be derived by observing that there

are d − 3 elements fa(x) which commute with any functions of x, namely,

{fa, g, h} = 0, for any g, h . (3.1)

3This reminds us of the abelian deformation of the Nambu-Poisson bracket in [46].

– 5 –
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So one may use the hyper-surface defined by fa(x) = ca (a = 1, · · · , d− 3) as the definition

of 3 dim submanifold in Rd. If we introduce the cut-off, one may call the corresponding

geometry as “fuzzy spaces” by employing the terminology of the noncommutative geometry

although our definition of the deformation is very different.

We start from the p = 1 case. In this case, we call the bracket as linear Nambu-Poisson

bracket [51] in the following. We note that the coordinates xµ define a Lie 3-subalgebra,

{xµ1 , xµ2 , xµ3} =
∑

µ4

fµ1µ2µ3

µ4
xµ4 , Pµ1µ2µ3(x) =

∑

µ4

fµ1µ2µ3

µ4
xµ4 . (3.2)

The mathematical classification of the linear Nambu-Poisson was already made and it was

reviewed in [9]. It is classified into two groups,

Type I: For each −1 ≤ r ≤ 3, 0 ≤ s ≤ min(3 − r, d − 4) one may define the bracket as

P I
(r,s) =

r+1
∑

j=1

±xj∂1 ∧ · · · \∂j · · · ∧ ∂4

+
s
∑

j=1

±xn+j+1∂1 ∧ · · · \∂r+j+1 · · · ∧ ∂4 . (3.3)

Here \∂ means that we delete that element in the wedge product.

Type II:

P II
a = ∂1 ∧ ∂2 ∧





d
∑

i,j=3

aijx
i∂j



 . (3.4)

For type I case, we can choose the plus/minus sign for each term in the summation.

In the following, we pick up interesting examples that come from this classification

theorem for each d, the number of coordinates.

d = 3: The only possibility comes from the type II algebra,

P = ∂1 ∧ ∂2 ∧ x3∂3 . (3.5)

In this case, the x3 may be taken as a real number or a phase eiθ3 . When x3 is taken

as real, and with an appropiate completion, the truncated algebra can be thought as a

deformation of R3.4 Due to the extra factor of x3, the Poisson structure (3.5) breaks O(3)

symmetry. In the correspondence with M5 brane [29, 30], P represents the 3-form flux on

M5 world volume. The breakdown of rotational symmetry comes from the fact that the

3-form background does not respect the symmetry. When x3 is a phase, one can think of

the truncated algebra as a deformation of R2 × S1
+, where S1

+ is dual to the algebra of

functions with only non-negative Fourier modes. In this case P ∼ ∂1 ∧ ∂2 ∧ ∂θ3
defines a

Nambu-Poisson bracket on R2 × S1
+.

4To avoid possible confusion, we emphasis that this is not the standard R3 as a Poission manifold. There

the Poisson structure is SO(3) and translationally invariant.
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d = 4: In this case a variety of examples come from type I. For r = 3, s = 0 case, a well

known example is

P = x1∂2 ∧ ∂3 ∧ ∂4 − x2∂1 ∧ ∂3 ∧ ∂4 + x3∂1 ∧ ∂2 ∧ ∂4 − x4∂1 ∧ ∂2 ∧ ∂3 . (3.6)

In this case, the 3-algebra generated by the coordinates is A4. It defines a Nambu-Poisson

bracket on S3 since r2 = (x1)2 + (x2)2 + (x3)2 + (x4)2 becomes the center of the 3-algebra.

Namely,

P (r2f1, f2, f3) = r2P (f1, f2, f3) , (3.7)

for any f1, f2, f3. So one may put r2 = const. The truncated algebra defines a fuzzy S3

in R4.

From this example, by taking Wick rotation, we obtain other examples. For example,

the bracket after x4 → ix4,

P = x1∂2 ∧ ∂3 ∧ ∂4 − x2∂1 ∧ ∂3 ∧ ∂4 + x3∂1 ∧ ∂2 ∧ ∂4 + x4∂1 ∧ ∂2 ∧ ∂3 , (3.8)

defines a bracket on dS3 since (x1)2+(x2)2+(x3)2−(x4)2 becomes the center of the algebra

and can be set to a constant.

Similarly after taking the Wick rotation for x3, x4, we obtain

P = x1∂2 ∧ ∂3 ∧ ∂4 − x2∂1 ∧ ∂3 ∧ ∂4 − x3∂1 ∧ ∂2 ∧ ∂4 + x4∂1 ∧ ∂2 ∧ ∂3 . (3.9)

In this case, (x1)2 + (x2)2 − (x3)2 − (x4)2 becomes the center of 3-algebra and can be set

to a constant which defines AdS3.

For r = 2, s = 0, we have

P(2,0) = x1∂2 ∧ ∂3 ∧ ∂4 + x2∂1 ∧ ∂3 ∧ ∂4 ± x3∂1 ∧ ∂2 ∧ ∂4

= (x1∂2 ∧ ∂3 + x2∂1 ∧ ∂3 ± x3∂1 ∧ ∂2) ∧ ∂4 . (3.10)

The center takes the form (x1)2 +(x2)2±(x3)2 and 3d manifold associated with it is S2×R

or (A)dS2 × R where R is described by x4. For finite N , we have a deformation of these

manifold.

In order to have s > 0, we need to take d > 4. For example for s = 1, we need d = 5 and

P2,1 = P2,0 ± x5∂1 ∧ ∂2 ∧ ∂3 . (3.11)

In this case, since x5 does not appear in the derivative, it is the center of 3-algebra. Actually

the algebra for the linear functions is identical with the Lorentzian algebra [10 – 12] for g =

SU(2) or SL(2) where x4, x5 play the role of T 0, T−1 respectively. In general the parameter s

represents the number of pairs of the Lorentzian generators. For smaller r we can add more

pair (3 − r) of Lorentzian generators. For r = 2, s = 1, the center of the algebra becomes

(x1)2 + (x2)2 ± (x3)2 ± 2x4x5, and x5 , (3.12)

to which we can assign arbitrary value.

– 7 –
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For r = 1 we obtain S1 × R2 or R3 and its generalizations with pairs of Lorentzian

generators. We note that here we obtain S1 or R1 from a constraint (x1)2 ± (x2)2 =const.

For r = 0, we obtain R3 with the bracket,

P = x1∂2 ∧ ∂3 ∧ ∂4 . (3.13)

Here x1 becomes the center of 3-bracket and can be set to a constant.

For r = −1, we have only the Lorentzian pairs.

For p > 1, we do not have the classification theorem. We have, however, a few

interesting examples of Nambu-Poisson bracket where fundamental identity is satisfied.

For p = 2, we have, for example,

P = ∂1 ∧ x2∂2 ∧ x3∂3. (3.14)

If we take x2,3 real, the we have a deformed R3 with linear flux introduced in two directions.

By taking x2 or/and x3 to be a phase, we can also have deformed R2 ×S1
+ or R×T2

+ (T2
+

represents S1
+ × S1

+).

Another example is

P = (ǫµνλxµ∂ν ∧ ∂λ) ∧ x4∂4 (3.15)

which can describe deformation of S2 × R1 or S2 × S1
+.

For p = 3, we have an example,

P = x1∂1 ∧ x2∂2 ∧ x3∂3 (3.16)

which can describe deformed R3, R2×S1
+, R×T2

+ or T3
+ depending on the interpretation

of xµ.

This last example will be used in the following since it has the simplest structure. In

particular, the algebra (2.11) takes the following form (after minor change of the normal-

ization factors),

{T (~n1), T (~n2), T (~n3)} = ~n1 · (~n2 × ~n3)T (~n1 + ~n2 + ~n3) . (3.17)

The truncated version becomes

{T (~n1), T (~n2), T (~n3)}N = ~n1 · (~n2 × ~n3)θ

(

N − |
∑

i

~ni|

)

T (~n1 + ~n2 + ~n3) (3.18)

where (~ni)j ≥ 0 and

θ(n) =

{

1 n ≥ 0

0 n < 0
. (3.19)

The explicit form of the algebra for other cases is straightforward to write down. For

example, S3 case eq. (3.6) is given as

{T (~n1), T (~n2), T (~n3)} = ǫµνλρ(n1)ν(n2)λ(n3)ρT (~n1 + ~n2 + ~n3 − ~σ + 2~eµ), (3.20)

where (~eµ)ν = δµν and ~σ =
∑4

i=1 ~eµ. The truncated 3-algebra can be obtained by restricting

the generators to |~n| ≤ N and including a truncation factor θ(N +2−
∑

i |~ni|) on the right

hand side.

– 8 –
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4. Application to BLG model and counting entropy

As we show in the appendix, the metric of the truncated Nambu-Poisson bracket has a

trivial structure and is useless in the construction of the invariant Lagrangian.5 Never-

theless, we can write down an N=8 supersymmetric equation of motion in terms of the

structure constants of the Lie 3-algebra which satisfies the fundamental identity [2],

D2XI
A −

i

2
Ψ̄CΓI

JXJ
DΨBfCDB

A +
1

2
fBCD

AfEFG
DXJ

BXK
C XI

EXJ
F XK

G = 0, (4.1)

ΓµDµΨA +
1

2
ΓIJXI

CXJ
DΨBfCDB

A = 0, (4.2)

(F̃µν)BA + ǫµνλ

(

XJ
CDλXJ

D +
i

2
Ψ̄CΓλΨD

)

fCDB
A = 0 . (4.3)

The SUSY transformation is

δXI
A = iǭΓIΨA (4.4)

δΨA = DµXI
AΓµΓIǫ −

1

6
XI

BXJ
CXK

D fBCD
AΓIJKǫ (4.5)

δ(Ãµ)BA = iǭΓµΓIX
I
CΨDfCDB

A . (4.6)

An essential point here is that the structure constant contracted with metric fABCD =

fABC
EhED does not appear at all [36]. It enables us to discuss important issues such as

the BPS equation or the moduli without knowing the Lagrangian.

Let us pick the algebra (3.16) and study the moduli. From the equation of motion,

the moduli would be described by solutions of the equation

fEFG
DXI

EXJ
F XK

G = 0 . (4.7)

We have to be careful in the structure of the truncated algebra. In the appendix,

we show that the algebra (3.16) has a structure which is similar to the Lorentzian alge-

bra [10 – 12]. Namely after removing generators which decouple from the algebra, the set

of generators is classified into three subsets. If we use a notation similar to [12], (i) A′
0: the

generators which do not appear on the right hand side of 3-commutator, namely the gen-

erator TD where fABC
D = 0 for any A,B,C. Such generators have the form T (~k) where

one or two components of ~k are zero. (ii) A′
−1: the generators which are in the center of

3-algebra. Namely the generator TA where fABC
D = 0 for any B,C,D. Such generators

take the form T (~k) where
∑

i ki = N −1, N . (iii) Â: generators which do not belong to A′
0

nor A′
−1. The difference from [10 – 12] is that we have a large number (O(N2)) of elements

in A′
0 and A′

−1.

The roles of fields in each subgroup are similar to [10 – 12]. Let us denote the generic

fields which belong to A′
0, A

′
−1, Â as X, Y , Z respectively. Then the equation of motion

5The invariant metric has nonvanishing components only for fields which do not have interactions. This is

similar to case of the algebra [36] where the metric can be derived and has the only nonvanishing component

〈T φ, T φ〉 6= 0. Of course, there may be a chance to add extra generators to obtain a nontrivial metric as in

the Lorentzian 3-algebra [10 – 12].
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is written schematically as

∂2X = 0, ∂2Y = F1(X,Z), ∂2Z = F2(X,Z) , (4.8)

and SUSY (and gauge) transformations are written similarly,

δX = 0, δY = G1(X,Z), δZ = G2(X,Z) , (4.9)

where F1,2, G1,2 represent some nonlinear functions. To find moduli, we can put the left

hand side of equation of motion (4.8) to be zero.

First we note that there is no constraint for Y from (4.7). Besides, Y fields never

appear in the nonlinear terms in the equations of motion. We can take any solutions of Y

of their equations of motion, and it will not have any effect on the rest of the fields. In this

sense, the Y fields should be viewed as non-physical fields, and we will not treat them as

part of the moduli.6

Secondly, if we assign VEV to X, the field equation and the symmetry transformations

do depend on the VEV. On the other hand, the SUSY (gauge) transformation (4.9) for X

implies that these symmetries are not violated. This behavior is what one expects for a

vacuum state. On the other hand, in the Lorentzian BLG model [12], the VEV for XI
0 was

interpreted as the coupling constant of the super Yang-Mills theory on D2 and hence is not

counted as part of the moduli space. Further analysis is needed to decide whether these

are to be counted as part of the moduli space or not. However we will see that including

them or not does not affect our entropy counting below.

Finally the assignment of VEV for Z does not seem to have such strange behavior.

Therefore, this is the degree of freedom which should be identified with the moduli of M2

brane in ordinary sense.

It turns out that the equation (4.7) can give rise to various solutions. For the 3-

algebra (3.16), three polynomials f1, f2, f3 which depend only on two polynomials of x, say

g1(x), g2(x) in general commute with each other,

{f1(g1, g2), f2(g1, g2), f3(g1, g2)}N = 0 . (4.10)

Therefore the moduli space is described by (truncated) polynomials of g1(x) and g2(x).

Depending on the choice of g1,2, we have different type of “Higgs” branches.

If we take both g1,2 as function of single variables, say g1 = x1, g2 = (x2)m, all the

functions of g1,2 belong to the group A′
0. The number of such functions is of the order of

N2. As we explained above, these may or may not be counted as part of the moduli space.

On the other hand, suppose we take g1,2 such that their polynomials depend on all the

coordinates non-trivially, for example g1 = x1 + x2 and g2 = (x3)2, the set of polynomials

of them contains elements belonging to Â. In this case, the VEVs are assigned to Z fields

and should be interpreted as the moduli of M2 branes. We can count the number of the

M2 branes for given set of g1,2. Suppose we choose them such that all the VEVs of fields

6On the other hand, if we treat them as part of the moduli, the number of solutions of (4.7) can be of

order N3. We can take 6 of the scalars XI to be Y fields, and the rest 2 of the XI ’s can be arbitrary. For

large N , the number of free parameters in the 2 arbitrary fields XI dominates and it is proportional to N3.
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can be interpreted as the moduli of M2 branes. If the degree of g1,2 is n1,2 respectively, the

number of independent generators are approximately N2

2n1n2
∼ N2 as long as n1,2 are much

smaller than N . We have the estimate for the number of membrane as

#M ∼ N2. (4.11)

This permits us to calculate the behavior of the entropy. The number of fields is given as

the number of generators (#G). It can be estimated as

#G =
(N + 1)(N + 2)(N + 3)

6
∼ N3/6 ∼ (#M)3/2. (4.12)

This is the celebrated N3/2 law for M2-brane.

One may do essentially the same counting for other d = 3 algebras associated with

R3 (3.5), (3.14) which give the same behavior. So one may guess the behavior of N3/2 law

as a generic feature of the d = 3 truncated Nambu-Poisson 3-algebras.

We note that there are some subtlety if one continues to do the similar analysis for

d > 3 cases. As we have seen, there are d − 3 generators φs(x) which satisfy,

{φsf1, f2, f3} = φs{f1, f2, f3} (4.13)

for any f1, f2, f3. One may set such generators as constant φs(x) = cs and this constraints

gives 3 dimensional algebra.

For the truncated algebras, since such φs has nontrivial degree as the polynomial of x.

For example φ = (x1)2 + (x2)2 + (x3)2 + (x4)2 which appear for S3 case has degree two. So

the above relation should be modified as

{φs •N f1, f2, f3}N = φs •N {f1, f2, f3}N−|φs| (4.14)

where |φs| is the degree of φs. It implies that we cannot put φs to a c-number if we want to

keep the fundamental identity. If we treat them as the independent generators, we would

have different scaling. For example, for any d = 4 cases, we have a simple estimate that

#M ∼ O(N3), #G ∼ O(N4) . (4.15)

Therefore we obtain N4/3 relation between the number of membranes and the number

of degree of freedom. This strange behavior for d > 3 signals the breakdown of the

truncation process which does not properly respect the local factorization of the space

into 3 dimensional and d − 3 dimensional spaces. Therefore, this anomalous scaling law

should be understood as coming from an incorrect regularization of the system.

5. Discussion

In this paper, we proposed a series of Lie 3-algebra which has two remarkable properties,

• N3/2 scaling of M2 branes with clear geometrical meaning.

• M5 brane theory in the large N limit [29, 30].
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On the other hand, it has obvious shortcomings at this moment, namely we cannot define

non-trivial Lagrangian with the current form of the algebra. A hope is that one may cure

it by adding some extra generators as in [10 – 12].

Of course, the cut-off algebra which we considered here is rather exotic algebra which

was not considered seriously in the literature. For example it would be much more de-

sirable to do similar truncation by some generalization of the Moyal product or by some

generalization of the concept of matrices. We note that, however, our derivation of N3/2

law is quite robust and the derivation of the scaling law will be similar even for these cases.
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A. Some details on the truncated Nambu-Poisson algebra (3.16)

A.1 Structure of algebra

We note that the truncated 3-algebra on (3.16) can be decomposed into three subspaces:

A0 A subspace spanned by generators T (~k) where one or two components of ~k is zero. In

the definition of NP bracket, we always multiply x1x2x3 after taking the derivation.

So the generators which belong to A0 never appear on the right hand side of the

commutator. We will denote generic generator which belongs to A0 as TX .

A−1 A subspace spanned by generators T (~k) where |~k| = N − 1, N . These generators are

the center of the algebra, namely

{TY , T (~p), T (~q)}N = 0, for ∀ ~p, ~q. (A.1)

where TY is a generic generator which belong to A−1. It comes the fact that we need

|~p|, |~q| ≥ 1 to have nonvanishing 3-commutator. These generators can show up on

the right hand side of the 3-bracket.

Â The generators which belong to neither A0 nor A−1. We will write generic elements

of Â as TZ .

– 12 –



J
H
E
P
0
8
(
2
0
0
8
)
0
7
6

We note that there are some elements which belong to N = A0 ∩ A−1. Since every

element in this subspace has vanishing commutator with anybody else and never appears on

the right hand side of the commutator, they decouple from the algebra as T (~0). Therefore,

we have to remove them from the algebra. We will write,

A′
0 = A0/N , A′

−1 = A−1/N , (A.2)

to represent the relevant part of the algebra. The number of generators which belong to

each subspace is

#(Â) ∼
N3

6
, #(A0) ∼

3N2

2
, #(A−1) ∼ N2, #(N ) ∼ 6N . (A.3)

In the large N limit, the number of the elements which belong to A0,A−1 is large (O(N2))

but it is still much smaller than that of Â.

A.2 Invariant metric

For any element T a
Y ∈ A′

−1 and any elements T b
Z ∈ Â, they must appear on the right hand

side of 3-commutator. It implies

〈T a
Y , T b

Y 〉 = 〈[TP , TQ, TR], T b
Y 〉 = −〈TR, [TP , TQ, T b

Y ]〉 = 0

〈T a
Z , T b

Y 〉 = 〈[TP , TQ, TR], T b
Y 〉 = −〈TR, [TP , TQ, T b

Y ]〉 = 0

for some TP , TQ, TR. So elements in A′
−1 must be orthogonal to any elements in A′

−1 and Â.

Similarly, for two elements in A′
0, since they do not show up in the commutator, there

are no constraint for their inner product from the symmetry:

〈T a
X , T b

X〉 = Kab (arbitrary) . (A.4)

We can also deduce that any elements in A′
−1 and Â are orthogonal with the elements

of A′
0,

〈T a
X , T b

Y 〉 = 〈T a
X , T b

Z〉 = 0. (A.5)

A proof is as follows. For the generic elements Tk1k2k3
∈ A′

−1 ∪ Â, we have k1, k2, k3 6= 0.

So one may write it as a triple commutator,

Tk1k2k3
=

1

k1k2k3
[Tk100, T0k20, T00k3

] , (A.6)

where Tk1k2k3
:= T (k1~e1 + k2~e2 + k3~e3). On the other hand, any element Tp1p2p3

∈ A′
0, one

of pi must be zero. Let us take it p1 = 0. Then we have

〈T0p2p3
, Tk1k2k3

〉 ∝ 〈T0p2p3
, [Tk100, T0k20, T00k3

]〉

= −〈[T0p2p3
, T0k20, T00k3

], Tk100〉 = 0 . (A.7)

Finally for any two elements Tp1p2p3
, Tq1q2q3

in Â, one can derive similarly,

〈Tp1p2p3
, Tq1q2q3

〉 ∝ 〈Tp1p2p3
, [Tq100, T0q20, T00q3

]〉

= −〈[Tp1p2p3
, T0q20, T00q3

], Tq100〉 . (A.8)
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On the right hand side, [Tp1p2p3
, T0q20, T00q3

] is zero or belong to either Â or A′
−1. Since

the inner product between Â or A′
−1 with any element in A′

0 is already shown to be zero,

we arrive at

〈T a
Z , T b

Z〉 = 0 , ∀ T a
Z , T b

Z ∈ Â . (A.9)

As we can see, the requirement of invariance imposes very severe constraints on the

form of the metric and at the end the metric has lots of null directions, making it not useful

for physical applications. The potential term of the BLG model, 〈[XI ,XJ ,XK ], [XI ,XJ ,XK ]〉

for example, is identically zero, because nontrivial metric components only exist for ele-

ments in A′
0, while elements in A′

0 never appear as the result of a 3-bracket.
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